Noroviruses Co-opt the Function of Host Proteins VAPA and VAPB for Replication via a Phenylalanine–Phenylalanine-Acidic-Tract-Motif Mimic in Nonstructural Viral Protein NS1/2

نویسندگان

  • Broc T. McCune
  • Wei Tang
  • Jia Lu
  • James B. Eaglesham
  • Lucy Thorne
  • Anne E. Mayer
  • Emily Condiff
  • Timothy J. Nice
  • Ian Goodfellow
  • Andrzej M. Krezel
  • Herbert W. Virgin
چکیده

The Norovirus genus contains important human pathogens, but the role of host pathways in norovirus replication is largely unknown. Murine noroviruses provide the opportunity to study norovirus replication in cell culture and in small animals. The human norovirus nonstructural protein NS1/2 interacts with the host protein VAMP-associated protein A (VAPA), but the significance of the NS1/2-VAPA interaction is unexplored. Here we report decreased murine norovirus replication in VAPA- and VAPB-deficient cells. We characterized the role of VAPA in detail. VAPA was required for the efficiency of a step(s) in the viral replication cycle after entry of viral RNA into the cytoplasm but before the synthesis of viral minus-sense RNA. The interaction of VAPA with viral NS1/2 proteins is conserved between murine and human noroviruses. Murine norovirus NS1/2 directly bound the major sperm protein (MSP) domain of VAPA through its NS1 domain. Mutations within NS1 that disrupted interaction with VAPA inhibited viral replication. Structural analysis revealed that the viral NS1 domain contains a mimic of the phenylalanine-phenylalanine-acidic-tract (FFAT) motif that enables host proteins to bind to the VAPA MSP domain. The NS1/2-FFAT mimic region interacted with the VAPA-MSP domain in a manner similar to that seen with bona fide host FFAT motifs. Amino acids in the FFAT mimic region of the NS1 domain that are important for viral replication are highly conserved across murine norovirus strains. Thus, VAPA interaction with a norovirus protein that functionally mimics host FFAT motifs is important for murine norovirus replication.IMPORTANCE Human noroviruses are a leading cause of gastroenteritis worldwide, but host factors involved in norovirus replication are incompletely understood. Murine noroviruses have been studied to define mechanisms of norovirus replication. Here we defined the importance of the interaction between the hitherto poorly studied NS1/2 norovirus protein and the VAPA host protein. The NS1/2-VAPA interaction is conserved between murine and human noroviruses and was important for early steps in murine norovirus replication. Using structure-function analysis, we found that NS1/2 contains a short sequence that molecularly mimics the FFAT motif that is found in multiple host proteins that bind VAPA. This represents to our knowledge the first example of functionally important mimicry of a host FFAT motif by a microbial protein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FFAT rescues VAPA-mediated inhibition of ER-to-Golgi transport and VAPB-mediated ER aggregation.

The VAMP-associated proteins termed VAP are a small gene family of proteins characterised by the presence of an N-terminal major sperm protein (MSP) domain. The P56S mutation of the B isoform (VAPB) has been linked to late-onset amyotrophic lateral sclerosis (ALS8) and its expression causes formation of large ER aggregates. Overexpression of the wild-type A isoform (VAPA) but not the B isoform ...

متن کامل

Neurobiology of Disease Motor Neuron Disease-Associated Mutant Vesicle- Associated Membrane Protein-Associated Protein (VAP) B Recruits Wild-Type VAPs into Endoplasmic Reticulum- Derived Tubular Aggregates

The vesicle-associated membrane protein-associated proteins (VAPs) VAPA and VAPB interact with lipid-binding proteins carrying a short motif containing two phenylalanines in an acidic tract (FFAT motif) and targets them to the cytosolic surface of the endoplasmic reticulum (ER). A genetic mutation (P56S) in the conserved major sperm protein homology domain of VAPB has been linked to motorneuron...

متن کامل

Caspase Cleavage Motifs of Influenza Subtypes Proteins: Alternations May Switch Viral Pathogenicity

Background and Aims: The caspases are unique proteases that mediate the host cell apoptosis during viral infection. In this study, we identified the caspase cleavage motifs of H5N1 and H9N2 influenza viruses isolated during 1998-2012. Materials and Methods: Amino acid sequences of the eleven proteins encoded by the viruses as the caspase substrates downloaded from NCBI. The caspase cleavage mot...

متن کامل

Nonstructural Protein 1 of Influenza A Virus Interacts with Human Guanylate-Binding Protein 1 to Antagonize Antiviral Activity

Human guanylate-binding protein 1 (hGBP1) is an interferon-inducible protein involved in the host immune response against viral infection. In response to infection by influenza A virus (IAV), hGBP1 transcript and protein were significantly upregulated. Overexpression of hGBP1 inhibited IAV replication in a dose-dependent manner in vitro. The lysine residue at position 51 (K51) of hGBP1 was esse...

متن کامل

A mutation in VAPB that causes amyotrophic lateral sclerosis also causes a nuclear envelope defect.

A proline to serine mutation (P56S) in vesicle-associated membrane protein-associated protein B and C (VAPB) causes an autosomal dominant form of amyotrophic lateral sclerosis (ALS). We show that the mutation also causes a nuclear envelope defect. Transport of nucleoporins (Nups) and emerin (EMD) to the nuclear envelope is blocked, resulting in their sequestration in dilated cytoplasmic membran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017